Modelling earth-to-air heat exchanger behaviour with the convolutive response factors method
Pierre Tittelein,
Gilbert Achard and
Etienne Wurtz
Applied Energy, 2009, vol. 86, issue 9, 1683-1691
Abstract:
This paper shows a new numerical model of earth-to-air heat exchanger. The system is discretized into "n" sections perpendicular to the exchanger pipe. In each section, the problem of conduction is solved using response factors method in order to reduce computational time. Each response factor is calculated using a finite elements program that solves 2D conduction problems. The particularity of this problem is that the time-constants are very high, making it impossible to use conventional properties of response factors to reduce the number of calculations. We will set out a new approach to solve this particular problem. Heat flux entering the pipe is then expressed as a function of the temperature of the air crossing the pipe and the external solicitations. A heat balance is then applied for each layer to find the resulting outlet air temperature. The model is then compared to an analytical model and a 3D model based on the dynamic finite volume approach. Finally an example of coupling between an earth-to-air heat exchanger and a low-consumption building is presented.
Keywords: Earth-to-air; heat; exchanger; EAHE; Response; factors; method; Low-consumption; building; Modelling; Object-oriented; simulation; environment (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306-2619(09)00054-3
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:86:y:2009:i:9:p:1683-1691
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().