EconPapers    
Economics at your fingertips  
 

Life cycle assessment of palm biodiesel: Revealing facts and benefits for sustainability

Kian Fei Yee, Kok Tat Tan, Ahmad Zuhairi Abdullah and Keat Teong Lee

Applied Energy, 2009, vol. 86, issue Supplement 1, S189-S196

Abstract: Similarity between the properties of biodiesel and petroleum-derived diesel has made the former one of the most promising alternatives to a renewable and sustainable fuel for the transportation sector. In Malaysia, palm oil can be a suitable feedstock for the production of biodiesel due to its abundant availability and low production cost. However, not many assessments have been carried out regarding the impacts of palm biodiesel on the environment. Hence, in this study, life cycle assessment (LCA) was conducted for palm biodiesel in order to investigate and validate the popular belief that palm biodiesel is a green and sustainable fuel. The LCA study was divided into three main stages, namely agricultural activities, oil milling and transesterification process for the production of biodiesel. For each stage, the energy balance and green house gas assessments were presented and discussed. These are important data for the techno-economical and environmental feasibility evaluation of palm biodiesel. The results obtained for palm biodiesel were then compared with rapeseed biodiesel. From this study, it was found that the utilization of palm biodiesel would generate an energy yield ratio of 3.53 (output energy/input energy), indicating a net positive energy generated and ensuring its sustainability. The energy ratio for palm biodiesel was found to be more than double that of rapeseed biodiesel which was estimated to be only 1.44, thereby indicating that palm oil would be a more sustainable feedstock for biodiesel production as compared to rapeseed oil. Moreover, combustion of palm biodiesel was found to be more environment-friendly than petroleum-derived-diesel as a significant 38% reduction of CO2 emission can be achieved per liter combusted.

Keywords: Biodiesel; Transesterification; Life; cycle; assessment; Energy; balance; Green; house; gas (search for similar items in EconPapers)
Date: 2009
References: Add references at CitEc
Citations: View citations in EconPapers (65)

Downloads: (external link)
http://www.sciencedirect.com/science/article/B6V1T ... a6ba070765d67b3e7525
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:86:y:2009:i:supplement1:p:s189-s196

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:86:y:2009:i:supplement1:p:s189-s196