A transient model for the energy analysis of indoor spaces
K.A. Antonopoulos,
F. Gioti and
C. Tzivanidis
Applied Energy, 2010, vol. 87, issue 10, 3084-3091
Abstract:
Using a finite-difference procedure, the dynamic energy response of indoor spaces under the influence of indoor energy pulses is analyzed. The method of analysis is simple and explicit and is based on the indoor surface thermal capacitance and heat-loss coefficient Cs and Ls respectively. It is demonstrated that these parameters characterize fully any specified indoor space, as far as its energy behaviour is concerned. Their values are calculated for an extended variety of indoor spaces, i.e. for various floor areas, floor dimensions ratios, indoor surface materials of envelope, partitions and furnishings, fenestration and indoor partitions areas. The range of validity of the present method of analysis is also defined and the corresponding deviations are quantified with reference to rigorous finite-difference solutions. The provided values of indoor space characteristics Cs and Ls may be used in a wide range of technological building applications, including comparisons and classifications of indoor spaces, design and selection of construction materials and furnishing as well as the investigation of effects from electric equipment, windows or doors opening, short-time ventilations, brief stay of visitors, etc.
Keywords: Building; Indoor; space; Surface; thermal; capacitance; Heat-loss; coefficient; Indoor; space; models; Indoor; thermal; pulse (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306-2619(10)00109-1
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:87:y:2010:i:10:p:3084-3091
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().