EconPapers    
Economics at your fingertips  
 

Application of phosphorus diffusion gettering process on upgraded metallurgical grade Si wafers and solar cells

H.B. Xu, R.J. Hong, B. Ai, L. Zhuang and H. Shen

Applied Energy, 2010, vol. 87, issue 11, 3425-3430

Abstract: Although phosphorus (P) diffusion gettering process has been wildly used to improve the performance of Si solar cells in photovoltaic technology, it is a new attempt to apply P diffusion gettering process to upgraded metallurgical grade silicon (UMG-Si) wafers with the purity of 99.999%. In this paper, improvements on the electrical properties of UMG-Si wafers and solar cells were investigated with the application of P diffusion gettering process. To enhance the improvements, the gettering parameters were optimized on the aspects of gettering temperature, gettering duration and POCl3 flow rate, respectively. As we expected, the electrical properties of both multicrystalline Si (multi-Si) and monocrystalline Si (mono-Si) wafers were significantly improved. The average minority carrier lifetime increased from 0.35Â [mu]s to nearly about 2.7Â [mu]s for multi-Si wafers and from 4.21Â [mu]s to 5.75Â [mu]s for mono-Si wafers, respectively. Accordingly, the average conversion efficiency of the UMG-Si solar cells increased from 5.69% to 7.03% for multi-Si solar cells (without surface texturization) and from 13.55% to 14.55% for mono-Si solar cells, respectively. The impurity concentrations of as-grown and P-gettered UMG-Si wafers were determined quantitively so that the mechanism of P diffusion gettering process on UMG-Si wafers and solar cells could be further understood. The results show that application of P diffusion gettering process has a great potential to improve the electrical properties of UMG-Si wafers and thus the conversion efficiencies of UMG-Si solar cells.

Keywords: Phosphorus; diffusion; gettering; Upgraded; metallurgical; grade; Si; Minority; carrier; lifetime; Impurity; content; Conversion; efficiency (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations View citations in EconPapers (4) Track citations by RSS feed

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306-2619(10)00090-5
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:87:y:2010:i:11:p:3425-3430

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Series data maintained by Dana Niculescu ().

 
Page updated 2017-09-29
Handle: RePEc:eee:appene:v:87:y:2010:i:11:p:3425-3430