Analysis and forecasting of nonresidential electricity consumption in Romania
Vincenzo Bianco,
Oronzio Manca,
Sergio Nardini and
Alina A. Minea
Applied Energy, 2010, vol. 87, issue 11, 3584-3590
Abstract:
Electricity consumption forecast has fundamental importance in the energy planning of a country. In this paper, we present an analysis and two forecast models for nonresidential electricity consumption in Romania. A first part of the paper is dedicated to the estimation of GDP and price elasticities of consumption. Nonresidential short run GDP and price elasticities are found to be approximately 0.136 and -0.0752, respectively, whereas long run GDP and price elasticities are equal to 0.496 and -0.274 respectively. The second part of the study is dedicated to the forecasting of nonresidential electricity consumption up to year 2020. A Holt-Winters exponential smoothing method and a trigonometric grey model with rolling mechanism (TGMRM) are employed for the consumption prediction. The two models lead to similar results, with an average deviation less than 5%. This deviation is to be considered acceptable in relation to the time horizon considered in the present study.
Keywords: Electricity; consumption; Forecasting; Elasticity; Grey; model; Romania (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (55)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306-2619(10)00203-5
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:87:y:2010:i:11:p:3584-3590
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().