Solar irradiation in diffusely enclosures with partitions
A.F. Miguel and
A. Silva
Applied Energy, 2010, vol. 87, issue 3, 836-842
Abstract:
This paper presents an approach to obtain the income of solar irradiation within partitioned enclosures partially transparent to solar radiation. This model is mathematically exact and it is function of the outside solar irradiation, the orientation of the enclosure, the properties of the enclosure envelope, the geometry and properties of partitions. From the physical point of view it is founded on the assumption that the envelope and partitions surfaces are fully diffusive and that the radiation diffused through the atmosphere is fully isotropic. The model was applied to assess the solar irradiation at the ground of a hemicylindrical tunnel fitted with inclined partitions. The results of this study demonstrate, among other things, that: (i) the solar irradiation inside the enclosure, with any cladding material and with any orientation, is mainly determined by the transmittance of the partitions and to a lesser extent by its reflectance, (ii) the solar radiation inside an enclosure with highly transparent partitions (i.e., transmittance > 0.5) is noticeable influenced by its orientation, but for a lower transmittance the influence of orientation becomes negligible; and (iii) to prevent the overheating within the enclosure it is advisable to install partitions with a low transmittance and a high absorptance on their surface facing downward.
Keywords: Solar irradiation; Diffuse irradiation; Direct beam; Partitioned enclosure; Modeling (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306-2619(09)00431-0
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:87:y:2010:i:3:p:836-842
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().