Cooling output optimization of an air handling unit
Andrew Kusiak and
Mingyang Li
Applied Energy, 2010, vol. 87, issue 3, 909 pages
Abstract:
A data-driven optimization approach for minimization of the cooling output of an air handling unit (AHU) is presented. The models used in this research are built with data mining algorithms. The performance of dynamic models build by four different data mining algorithms is studied. A model extracted by a neural network is selected for identifying the functional mapping between specific outputs and controllable and non-controllable inputs of the AHU. To minimize the cooling output while maintaining the corresponding thermal properties of the supply air within a certain range, a bi-objective optimization model is proposed. The evolutionary strategy algorithm is applied to solve the optimization problem with the optimal control settings obtained at each time stamp. The minimized AHU's cooling output reduces the chiller's load, which leads to energy savings.
Keywords: HVAC; Air; handling; unit; Data; mining; Neural; network; Multi-objective; optimization; Evolutionary; computation; Dynamic; modeling; Cooling; output (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306-2619(09)00249-9
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:87:y:2010:i:3:p:901-909
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().