A data-driven approach for steam load prediction in buildings
Andrew Kusiak,
Mingyang Li and
Zijun Zhang
Applied Energy, 2010, vol. 87, issue 3, 925-933
Abstract:
Predicting building energy load is important in energy management. This load is often the result of steam heating and cooling of buildings. In this paper, a data-driven approach for the development of a daily steam load model is presented. Data-mining algorithms are used to select significant parameters used to develop models. A neural network (NN) ensemble with five MLPs (multi-layer perceptrons) performed best among all data-mining algorithms tested and therefore was selected to develop a predictive model. To meet the constraints of the existing energy management applications, Monte Carlo simulation is used to investigate uncertainty propagation of the model built by using weather forecast data. Based on the formulated model and weather forecasting data, future steam consumption is estimated. The latter allows optimal decisions to be made while managing fuel purchasing, scheduling the steam boiler, and building energy consumption.
Keywords: Data; mining; Building; load; estimation; Steam; load; prediction; Neural; network; ensemble; Energy; forecasting; Monte; Carlo; simulation; Parameter; selection (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (46)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306-2619(09)00380-8
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:87:y:2010:i:3:p:925-933
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().