Impact of different operating modes for a Severn Barrage on the tidal power and flood inundation in the Severn Estuary, UK
Junqiang Xia,
Roger A. Falconer and
Binliang Lin
Applied Energy, 2010, vol. 87, issue 7, 2374-2391
Abstract:
The Severn Estuary has a spring tidal range approaching 14Â m and is regarded as having one of the highest tidal ranges in the world. Various proposals have been made regarding the construction of a tidal barrage across the estuary to enable tidal energy to be extracted. The barrage scheme originally proposed by the Severn Tidal Power Group (STPG) would be the largest project for tidal power generation in the world if built as proposed. Therefore, it is important to study the impact of different operating modes for this barrage on the tidal power output and flood inundation extent in the estuary. In this paper, an existing two-dimensional hydrodynamic model based on an unstructured triangular mesh has been integrated with a new algorithm developed for the estimation of tidal power output, which can account for three barrage operating modes, including ebb generation, flood generation, and two-way generation. The refined model was then used to investigate the impact of different barrage operating modes on the tidal power output and the associated extent of flood inundation along the Severn Estuary. Predicted results indicate that the mode of flood generation would produce the least electrical energy and cause a larger reduction in the maximum water levels upstream of the barrage. Two-way generation would provide an improvement to these conditions, and produce an equivalent amount of electricity to that from ebb generation, with a low installed capacity and a small loss of intertidal zones. Therefore, the mode of ebb generation or two-way generation would appear to be a preferred option for power generation, because both would offer benefits of acceptable electrical energy and reduced flood risk.
Keywords: Severn; Barrage; Tidal; power; Coastal; flooding; Operating; modes; Ebb; generation; Two-way; generation; 2D; hydrodynamic; model (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (26)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306-2619(09)00511-X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:87:y:2010:i:7:p:2374-2391
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().