Predictive tools for the estimation of downcomer velocity and vapor capacity factor in fractionators
Alireza Bahadori and
Hari B. Vuthaluru
Applied Energy, 2010, vol. 87, issue 8, 2615-2620
Abstract:
Fractionation is one of the pivotal unit operations in refineries and gas processing industries which is single largest energy-degrading processing unit utilized to separate mixtures into individual products. A reliable design method for sizing tray fractionators must take into account of foaming which is a major consideration in many process systems. The aim of this study is to develop simple predictive tool, which is simpler to use than current available techniques avoiding large number of parameters requiring less complicated and shorter computations, for accurate determination of downcomer velocity and vapor capacity factor as a function of tray spacing and density. The results can be used in follow-up design calculations to size fractionators without foaming formation for tray spacing up to 1.2Â m, vapor densities up to 100Â kg/m3 and liquid and vapor density differences up to 950Â kg/m3. The accuracy of the proposed equations was tested and found to be in excellent agreement with the reported data for the wide range of conditions, wherein the average absolute deviation percent of proposed equations are 0.77% and 2.35% for downcomer design velocity and vapor capacity factor respectively. The proposed predictive tool detailed in the paper can be very helpful for design engineers to handle sizing calculations for tray fractionators.
Keywords: Fractionator; Downcomer; design; velocity; Correlation; Foaming (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306-2619(10)00040-1
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:87:y:2010:i:8:p:2615-2620
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().