Economics at your fingertips  

Gas-liquid absorption reaction between (NH4)2SO3 solution and SO2 for ammonia-based wet flue gas desulfurization

Xiang Gao, Honglei Ding, Zhen Du, Zuliang Wu, Mengxiang Fang, Zhongyang Luo and Kefa Cen

Applied Energy, 2010, vol. 87, issue 8, 2647-2651

Abstract: In order to investigate the characteristics of the reaction between ammonium sulfite, the main desulfurizing solution, and the flue-gas-contained sulfur dioxide during the process of ammonia-based WFGD (wet flue gas desulfurization) in a power plant, the gas-liquid absorption reaction between sulfur dioxide and an ammonium sulfite solution was studied in a stirred tank reactor. The experimental results indicate that the absorption of sulfur dioxide is controlled by both the gas- and liquid-films when the ammonium sulfite concentration is lower than 0.05Â mol/L, and mainly by the gas-film at higher concentrations. In the latter case, the reaction rates are found to be zero-order with respect to the concentration of ammonium sulfite. The absorption rates of sulfur dioxide increase as the concentration of sulfur dioxide in inlet gas and the temperature increase. The reaction rate is of 0.6th-order with respect to the concentration of sulfur dioxide.

Keywords: (NH4)2SO3; solution; SO2; Absorption; Gas-liquid; reaction; Two-film; theory (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations View citations in EconPapers (2) Track citations by RSS feed

Downloads: (external link)
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Ordering information: This journal article can be ordered from
http://www.elsevier. ... 405891/bibliographic

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Series data maintained by Dana Niculescu ().

Page updated 2017-09-29
Handle: RePEc:eee:appene:v:87:y:2010:i:8:p:2647-2651