Economics at your fingertips  

Optimum sizing of wind-battery systems incorporating resource uncertainty

Anindita Roy, Shireesh B. Kedare and Santanu Bandyopadhyay

Applied Energy, 2010, vol. 87, issue 8, 2712-2727

Abstract: The inherent uncertainty of the wind is a major impediment for successful implementation of wind based power generation technology. A methodology has been proposed in this paper to incorporate wind speed uncertainty in sizing wind-battery system for isolated applications. The uncertainty associated with the wind speed is incorporated using chance constraint programming approach. For a pre-specified reliability requirement, a deterministic equivalent energy balance equation may be derived from the chance constraint that allows time series simulation of the entire system. This results in a generation of the entire set of feasible design options, satisfying different system level constraints, on a battery capacity vs. generator rating diagram, also known as the design space. The proposed methodology highlights the trade-offs between the wind turbine rating, rotor diameter and the battery size for a given reliability of power supply. The optimum configuration is chosen on the basis of the minimum cost of energy (US$/kWh). It is shown with the help of illustrative examples that the proposed methodology is generic and flexible to incorporate alternate sub-component models.

Keywords: Wind-battery; system; Chance; constrained; programming; Sizing; curve; Design; space; Wind; resource; uncertainty (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations View citations in EconPapers (23) Track citations by RSS feed

Downloads: (external link)
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Ordering information: This journal article can be ordered from
http://www.elsevier. ... 405891/bibliographic

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Series data maintained by Dana Niculescu ().

Page updated 2017-09-29
Handle: RePEc:eee:appene:v:87:y:2010:i:8:p:2712-2727