Economics at your fingertips  

The preparation and properties of multi-component molten salts

Qiang Peng, Jing Ding, Xiaolan Wei, Jianping Yang and Xiaoxi Yang

Applied Energy, 2010, vol. 87, issue 9, 2812-2817

Abstract: This paper was focused on thermal stability of molten salts and their thermo-physical properties at high temperature. In this experiment, multi-component molten salts composed of potassium nitrate, sodium nitrite and sodium nitrate with 5% additive A of the chlorides were prepared by statical mixing method. The experiments found molten salt with 5% additive A had higher thermal stability and its best operating temperature would be increased to 550 °C from 500 °C when comparing to ternary nitrate salt. Meanwhile, thermal stability and thermal cycling analysis showed molten salts with 5% additive A had lower freezing point and loss of nitrite content and deterioration time of molten salts were reduced at the same time. DSC tests also indicated loss of latent heat in molten salts with 5% additive A was decreased. Besides, thermo-physical properties measured showed molten salt with 5% additive A had a heat capacity of 2.32 kJ/kg °C, lower than 4.19 kJ/kg °C for water between 0 °C and 100 °C and a low viscosity range from 3.0 to 1.4 cp between 150 °C and 500 °C, analogous with 1.8-0.3 cp for water between 0 °C and 100 °C. Other thermo-physical properties, such as thermal conductivity, density and linear thermal expansion, were also determined here.

Keywords: Molten; nitrate; salt; Additive; Thermal; stability; Thermo-physical; properties (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations View citations in EconPapers (15) Track citations by RSS feed

Downloads: (external link)
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Ordering information: This journal article can be ordered from
http://www.elsevier. ... 405891/bibliographic

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Series data maintained by Dana Niculescu ().

Page updated 2017-09-29
Handle: RePEc:eee:appene:v:87:y:2010:i:9:p:2812-2817