Combustion and emissions performance of a DME-enriched spark-ignited methanol engine at idle condition
Chen Liang,
Changwei Ji and
Xiaolong Liu
Applied Energy, 2011, vol. 88, issue 11, 3704-3711
Abstract:
Dimethyl ether (DME) and methanol are thought to be one of the most promising alternative fuels for IC engines. Meanwhile, previous investigations also have pointed out the good prospects for adopting DME and methanol in IC engines. The experiments in this paper were carried out at idle condition to investigate the effect of applying the methanol/DME blended fuel in a SI engine. The engine was modified to be fueled with the mixture of methanol and DME which were injected into the engine intake ports simultaneously. Various DME fractions were selected to investigate the effect of DME addition on engine performance. The experimental results showed that indicated thermal efficiency was increased by 25% and coefficient of cyclic variation in engine speed was decreased by 29.2% at the DME energy fraction of 85.2% in the total fuel. In addition, both flame development and propagation durations were shortened with the increase of DME enrichment level at idle condition. Meanwhile, the largest drop of HC emissions was nearly 50% compared with the original methanol engine at stoichiometric condition. However, CO and NOx emissions increase with the addition of DME.
Keywords: Methanol; Dimethyl ether (DME); SI engines; Idle condition; Emissions (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (24)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261911002923
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:88:y:2011:i:11:p:3704-3711
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2011.04.056
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().