EconPapers    
Economics at your fingertips  
 

Numerical analysis of two-stroke free piston engine operating on HCCI combustion

Shuaiqing Xu, Yang Wang, Tao Zhu, Tao Xu and Chengjun Tao

Applied Energy, 2011, vol. 88, issue 11, 3712-3725

Abstract: An opposed-piston hydraulic free piston engine operating with homogenous charge compression ignition (HCCI) combustion, has been proposed by State Key Laboratory of Engines as a means of significantly improving the IC engine’s cycle thermal efficiency and lowering exhaust emissions. Single and multi-zone Chemkin model with detailed chemical kinetics, and unique piston dynamics extracted from one dimensional gas dynamic model, have been used to analyze the combustion characteristics and engine performance. Intake heating, variable compression ratio and internal EGR are utilized to control the combustion phasing and duration in the cycle simulations, revealing the critical factors and possible limits of performance improvement relative to conventional crank engines. Furthermore, real engine effects such as heat transfer with air swirl, residual mass fraction, thermal stratification, and heat loss fraction between zones are considered in the sequential CFD/multi-zone method to approach the realistic engine performance at an acceptable knock level.

Keywords: Free piston; HCCI; Combustion phasing; Ringing intensity; Scavenging efficiency (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261911002935
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:88:y:2011:i:11:p:3712-3725

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2011.05.002

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:88:y:2011:i:11:p:3712-3725