A general source-sink model with inoperability constraints for robust energy sector planning
Raymond R. Tan
Applied Energy, 2011, vol. 88, issue 11, 3759-3764
Abstract:
The concept of inoperability was originally introduced as a means of quantifying risk in systems comprised of interdependent subsystems, using a modified input–output framework. This paper describes a novel robust optimization model for energy planning with inoperability constraints. The formulation is based on the established source-sink framework, which has been used extensively for energy planning applications under various environmental footprint constraints. The proposed model determines the optimal allocation of various energy sources within a system to corresponding energy sinks or demands, while ensuring that inoperability limits of the latter are satisfied for multiple enumerated scenarios. The basic formulation results in a linear program (LP), while a mixed integer linear programming (MILP) extension is also described. In either case, a globally optimal solution can be easily determined if one exists. Illustrative case studies are then given to demonstrate this new method.
Keywords: Energy planning; Robust optimization; Inoperability; Risk analysis; Source-sink model (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261911002388
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:88:y:2011:i:11:p:3759-3764
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2011.04.016
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().