Comparison between ANNs and linear MCP algorithms in the long-term estimation of the cost per kWh produced by a wind turbine at a candidate site: A case study in the Canary Islands
Sergio Velázquez,
José A. Carta and
J.M. Matías
Applied Energy, 2011, vol. 88, issue 11, 3869-3881
Abstract:
In the work presented in this paper Artificial Neural Networks (ANNs) were used to estimate the long-term wind speeds at a candidate site. The specific costs of the wind energy were subsequently determined on the basis of the knowledge of these wind speeds. The results were compared with those obtained with a linear Measure–Correlate–Predict (MCP) method. The mean hourly wind speeds and directions recorded over a 10year period at six weather stations located on different islands in the Canary Archipelago (Spain) were used as a case study. The power-wind speed curves for five wind turbines of different rated power were also used. The mean absolute percentage error (MAPE), Pearson’s correlation coefficient and the Index of Agreement (IoA) between measured and estimated data were used to evaluate the errors made with the different metrics analysed.
Keywords: Artificial Neural Network; Long-term estimation; Measure correlate predict; Variance Ratio Method; Wind energy cost (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (25)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261911002984
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:88:y:2011:i:11:p:3869-3881
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2011.05.007
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().