Gas turbine sensor validation through classification with artificial neural networks
Thomas Palmé,
Magnus Fast and
Marcus Thern
Applied Energy, 2011, vol. 88, issue 11, 3898-3904
Abstract:
Modern power plants are all strongly dependent on reliable and accurate sensor readings for monitoring and control, thus making sensors an important part of any plant. Failing sensors can force a plant or component into non-optimal operation, cause complete shut-down of operation or in the worst case result in damage to components. Given their importance, sensors need regular calibration and maintenance, a time-consuming and therefore costly process. In this paper a method is presented for evaluating sensor accuracy which aims to minimize the need for calibration and at the same time avoid shut-downs due to sensor faults etc. The proposed method is based on training artificial neural networks as classifiers to recognize sensor drifts. The method is evaluated on two types of gas turbines, i.e., one single-shaft and one twin-shaft machine. The results show the method is capable of early detection of sensor drifts for both types of machines as well as accurate production of soft measurements. The findings suggest that the use of artificial neural networks for sensor validation could contribute to more cost-effective maintenance as well as to increased availability and reliability of power plants.
Keywords: Sensor validation; Gas turbine; Classification; Artificial neural network (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261911002170
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:88:y:2011:i:11:p:3898-3904
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2011.03.047
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().