EconPapers    
Economics at your fingertips  
 

Maximisation of heat transfer in a coil in tank PCM cold storage system

A. Castell, M. Belusko, F. Bruno and L.F. Cabeza

Applied Energy, 2011, vol. 88, issue 11, 4120-4127

Abstract: Thermal energy storage systems for both heat and cold are necessary for many industrial processes. High energy density and high power capacity are desirable properties of the storage. The use of latent heat increases the energy density of the storage tank with high temperature control close to the melting point. Tube in PCM tank is a very promising system that provides high packing factor. This work presents an experimental study of a PCM tank for cold storage applications. Two different configurations and different flow rates of the heat transfer fluid were studied. The effectiveness of the PCM storage system was defined as that of a heat exchanger. The results showed that the heat exchange effectiveness of the system did not vary with time, decreased with increasing flow rate and increased with increasing heat transfer area. The effectiveness was experimentally determined to only be a function of the ratio m˙/A. This equation was found to be adequately be used to design a PCM storage system, and a case study is presented. It was shown that the tube in tank design together with a low temperature PCM is suitable as a thermal storage facility for cold storage.

Keywords: PCM; Cold storage tank; Coil in tank; Heat transfer (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (35)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261911002169
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:88:y:2011:i:11:p:4120-4127

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2011.03.046

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:88:y:2011:i:11:p:4120-4127