Model-based optimal control of a dedicated outdoor air-chilled ceiling system using liquid desiccant and membrane-based total heat recovery
Gaoming Ge,
Fu Xiao and
Xinhua Xu
Applied Energy, 2011, vol. 88, issue 11, 4180-4190
Abstract:
This study presents a model-based control strategy for a novel dedicated outdoor air-chilled ceiling (DOAS-CC) system with the aim of optimizing the overall system performance. The DOAS-CC system incorporates liquid desiccant dehumidification and membrane-based total heat recovery technologies. Simplified but reliable models of major components in the DOAS-CC system are firstly developed to predict the system performance. A cost function is then constructed to minimize total energy consumption while properly maintaining thermal comfort reflected by indoor air temperature and relative humidity. Genetic algorithm is used to search for optimal set-points of the supply air temperature and humidity ratio of the dedicated outdoor air subsystem as well as the supply water temperature. The performance of this strategy is tested and evaluated with different control settings in a simulated multi-zone space served by the DOAS-CC system under various weather conditions. The results show that optimized control variables produced by the optimal strategy can improve the system energy performance and maintain indoor thermal comfort.
Keywords: Dedicated outdoor air system; Chilled ceiling; Liquid desiccant; Membrane-based total heat recovery; Optimal control (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (31)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261911002807
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:88:y:2011:i:11:p:4180-4190
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2011.04.045
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().