EconPapers    
Economics at your fingertips  
 

Electrical and thermal performance of silicon concentrator solar cells immersed in dielectric liquids

Xinyue Han, Yiping Wang and Li Zhu

Applied Energy, 2011, vol. 88, issue 12, 4489 pages

Abstract: Direct liquid-immersion cooling of concentrator solar cells was proposed as a solution for receiver thermal management of concentrating photovoltaic (CPV) and hybrid concentrating photovoltaic thermal (CPV-T) systems. De-ionized (DI) water, isopropyl alcohol (IPA), ethyl acetate, and dimethyl silicon oil were selected as potential immersion liquids based on optical transmittance measurement results. Improvements to the electrical performance of silicon CPV cells were observed under a range of concentrations in the candidate dielectric liquids, arising from improved light collection and reduced cell surface recombination losses from surface adsorption of polar molecules. Three-dimensional numerical simulations with the four candidate liquids as the working fluids, exploring the thermal performance of a silicon CPV cell array in a liquid immersion prototype receiver, have been performed. Simulation results show that the direct-immersion cooling approach can maintain low and uniform cell temperature in the designed liquid immersion receiver. The fluid inlet velocity and flow mode, along with the fluid thermal properties, all have a significant influence on the cell array temperature.

Keywords: Direct liquid immersion cooling; Silicon concentrator solar cell; Electrical characteristics; Thermal performance (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (25)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261911003321
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:88:y:2011:i:12:p:4481-4489

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2011.05.037

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:88:y:2011:i:12:p:4481-4489