A complete 0D thermodynamic predictive model for direct injection diesel engines
F. Payri,
P. Olmeda,
J. Martín and
A. García
Applied Energy, 2011, vol. 88, issue 12, 4632-4641
Abstract:
Ideal models provide the simplest way to reproduce internal combustion engine (ICE) cycles, but they usually do not represent with sufficient accuracy the actual behaviour of an ICE. A suitable alternative for research and development applications is provided by zero-dimensional (0D) thermodynamic models. Such models are very useful for predicting the instantaneous pressure and temperature in the combustion chamber, which in turn allows the prediction of engine operation characteristics. However, they use simplifying hypotheses which lead, in some cases, to a lack of accuracy or a limited predictive capability.
Keywords: Real cycles; Thermodynamic model; Heat transfer; Blow-by leakage; Engine deformations; Fuel injection (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (24)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261911003758
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:88:y:2011:i:12:p:4632-4641
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2011.06.005
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().