Reactive power dispatch in wind farms using particle swarm optimization technique and feasible solutions search
Marcela Martinez-Rojas,
Andreas Sumper,
Oriol Gomis-Bellmunt and
Antoni Sudrià-Andreu
Applied Energy, 2011, vol. 88, issue 12, 4678-4686
Abstract:
In this paper, an optimization method for the reactive power dispatch in wind farms (WF) is presented. Particle swarm optimization (PSO), combined with a feasible solution search (FSSPSO) is applied in order to optimize the reactive power dispatch, taking into consideration the reactive power requirement at point of common coupling (PCC), while active power losses are minimized in a WF. The reactive power requirement at PCC is included as a restriction problem and is dealt with feasible solution search. Finally an individual set point, particular for each wind turbine (WT), is found. The algorithm is tested in a WF with 12 WTs, taking into consideration different control options and different active power output levels.
Keywords: Wind farm; Reactive power compensation; Particle swarm optimization (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (27)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261911003801
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:88:y:2011:i:12:p:4678-4686
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2011.06.010
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().