A theoretical analysis of the capture of greenhouse gases by single water droplet at atmospheric and elevated pressures
Wei-Hsin Chen,
Yu-Lin Hou and
Chen-I Hung
Applied Energy, 2011, vol. 88, issue 12, 5120-5130
Abstract:
Gas absorption by droplets is an important route to reduce greenhouse gas emissions, especially for carbon dioxide. To recognize the fundamental absorption processes of greenhouse gases by single droplets, the mass transport phenomena of greenhouse gas uptake by a quiescent water droplet at atmospheric and elevated pressures are analyzed theoretically and four common greenhouse gases of CO2, N2O, CH4 and O3 are taken into consideration. On account of piecewise function encountered at the droplet surface, it is impossible to obtain a fully analytical solution for describing the mass transfer process. Instead, a semi-analytical method is developed to predict the mass diffusion between the gas phase and the liquid phase. The obtained results indicate that, by virtue of the four greenhouse gases characterized by low mass diffusion number, the entire mass transfer is controlled by the liquid phase. A unified formula has been successfully established to aid in estimating the dimensionless solute uptake process and the dimensionless aqueous diffusion time of 0.45 is sufficiently long the implement the absorption process. For the ambient temperature and pressure in the ranges of 280–350K and 1–20atm, respectively, it is found that increasing the two parameters will intensify the solute absorption amount significantly and the absorption process can be accelerated by increasing temperature.
Keywords: Greenhouse gas absorption; CO2, N2O, CH4 and O3; Water droplet; Mass diffusion number; Semi-analytical solution; Atmospheric and elevated pressures (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626191100465X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:88:y:2011:i:12:p:5120-5130
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2011.07.020
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().