A novel heat integrated batch distillation scheme
Debadrita Maiti,
Amiya K. Jana and
Amar Nath Samanta
Applied Energy, 2011, vol. 88, issue 12, 5225 pages
Abstract:
Published studies have been focused mainly on the energy integration of continuous distillation columns. In this contribution, a novel heat integrated batch distillation column (HIBDC) is proposed. Aiming to improve the thermodynamic efficiency and reduce the total annual cost (TAC), a thermally coupled column configuration is explored with introducing heat integration between the rectifying tower and concentric reboiler. A compressor is employed to provide the necessary temperature driving force for the heat transferred from the rectifier to the reboiler. Investigating the feasibility of energy integration in the simulated batch process, a number of sensitivity tests have been conducted to select the value of operating compression ratio. An economic comparison between the proposed HIBDC and the conventional stand alone column is also performed. It is observed that the HIBDC system appears overwhelmingly superior to its conventional counterpart providing about an energy savings of 56.1% and cost (TAC) savings of 40.53%.
Keywords: Heat integration; Batch distillation; Feasibility; Energy savings; Economics (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261911004296
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:88:y:2011:i:12:p:5221-5225
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2011.06.040
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().