EconPapers    
Economics at your fingertips  
 

Supervisory and optimal control of central chiller plants using simplified adaptive models and genetic algorithm

Zhenjun Ma and Shengwei Wang

Applied Energy, 2011, vol. 88, issue 1, 198-211

Abstract: This paper presents a model-based supervisory and optimal control strategy for central chiller plants to enhance their energy efficiency and control performance. The optimal strategy is formulated using simplified models of major components and the genetic algorithm (GA). The simplified models are used as the performance predictors to estimate the system energy performance and response to the changes of control settings and working conditions. Since the accuracy of the models has significant impacts on the overall prediction results, the models used are linear in the parameters and the recursive least squares (RLS) estimation technique with exponential forgetting is used to identify and update the model parameters online. That is to ensure that the linear models can provide reliable and accurate estimates when working condition changes. The GA, as a global optimization tool, is used to solve the optimization problem and search for globally optimal control settings. The performance of this strategy is tested and evaluated in a simulated virtual system representing the actual central chiller plant in a super high-rise building under various working conditions. The results showed that this strategy can save about 0.73-2.55% daily energy of the system studied, as compared to a reference strategy using conventional settings.

Keywords: Simplified; models; Parameter; estimation; Genetic; algorithm; Optimal; control; Central; chiller; plant; Energy; saving (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (44)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306-2619(10)00306-5
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:88:y:2011:i:1:p:198-211

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:88:y:2011:i:1:p:198-211