Performance comparison of six numerical methods in estimating Weibull parameters for wind energy application
Tian Pau Chang
Applied Energy, 2011, vol. 88, issue 1, 272-282
Abstract:
Two-parameter Weibull function has been widely applied to evaluate wind energy potential. In this paper, six kinds of numerical methods commonly used for estimating Weibull parameters are reviewed; i.e. the moment, empirical, graphical, maximum likelihood, modified maximum likelihood and energy pattern factor method. Their performance is compared through Monte Carlo simulation and analysis of actual wind speed according to the criterions such as Kolmogorov-Smirnov test, parameter error, root mean square error, and wind energy error. The results show that, in simulation test of random variables, the graphical method's performance in estimating Weibull parameters is the worst one, followed by the empirical and energy pattern factor methods, if data number is smaller. The performance for all the six methods is improved while data number becomes larger; the graphical method is even better than the empirical and energy pattern factor methods. The maximum likelihood, modified maximum likelihood and moment methods present relatively more excellent ability throughout the simulation tests. From analysis of actual data, it is found that if wind speed distribution matches well with Weibull function, the six methods are applicable; but if not, the maximum likelihood method performs best followed by the modified maximum likelihood and moment methods, based on double checks including potential energy and cumulative distribution function.
Keywords: Wind; energy; Weibull; function; Monte; Carlo; simulation; Performance; Random; variable; Kolmogorov-Smirnov; test (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (99)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306-2619(10)00232-1
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:88:y:2011:i:1:p:272-282
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().