EconPapers    
Economics at your fingertips  
 

Effect of kaolin addition on ash characteristics of palm empty fruit bunch (EFB) upon combustion

Supatchaya Konsomboon, Suneerat Pipatmanomai, Thanid Madhiyanon and Suvit Tia

Applied Energy, 2011, vol. 88, issue 1, 298-305

Abstract: Palm empty fruit bunch (EFB), a by-product of the palm oil industry, is being recognized as one of the most potential kinds of biomass for energy production in Thailand. However, it has been reported that, in combusting EFB in boilers, some compounds evolving from abundant alkali metals in EFB into gas-phase condense and deposit on low-temperature surfaces of heat exchange equipment, causing fouling and corrosion problems. To come up with a solution to impede the deposition, kaolin, which is abundant in kaolinite (Al2Si2O5(OH)4), is employed to capture the alkali metal vapours eluding from the combustion region. The experiments were designed to simulate the combustion situations that may take place when kaolin is utilized in two different approaches: premixing of kaolin with EFB prior to combustion and gas-phase reaction of volatiles from EFB with kaolin. The amounts of kaolin used were 8% and 16% by weight based on dry weight of EFB, which were equivalent to one and two times of the theoretical kaolin requirement to capture all potassium originally present in the EFB. The furnace temperatures used for EFB combustion were 700-900 °C and ashes were analyzed by XRF and XRD. The results revealed that, under the kaolin premixing condition, 8% kaolin addition was sufficient to capture the potassium compounds at low temperature, i.e. 700 and 800 °C. However, when the temperature was increased to 900 °C, 16% kaolin addition was needed to completely capture the potassium compounds. The results from gas-phase experiments showed that kaolin can capture volatile potassium at maximum 25% at 900 °C. The XRD results showed, for both experimental cases, the evidence of formation of the high melting temperature potassium-alumino-silicates, which confirmed the reaction of potassium compounds with kaolin. The study also suggests that the premixing method is better than the other because of its higher overall capture efficiency.

Keywords: Palm; empty; fruit; bunch; (EFB); Combustion; Biomass; Fouling; Kaolin; Alkali (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306-2619(10)00261-8
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:88:y:2011:i:1:p:298-305

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:88:y:2011:i:1:p:298-305