Modeling technological learning and its application for clean coal technologies in Japan
Toshihiko Nakata,
Takemi Sato,
Hao Wang,
Tomoya Kusunoki and
Takaaki Furubayashi
Applied Energy, 2011, vol. 88, issue 1, 330-336
Abstract:
Estimating technological progress of emerging technologies such as renewables and clean coal technologies becomes important for designing low carbon energy systems in future and drawing effective energy policies. Learning curve is an analytical approach for describing the decline rate of cost and production caused by technological progress as well as learning. In the study, a bottom-up energy-economic model including an endogenous technological learning function has been designed. The model deals with technological learning in energy conversion technologies and its spillover effect. It is applied as a feasibility study of clean coal technologies such as IGCC (Integrated Coal Gasification Combined Cycle) and IGFC (Integrated Coal Gasification Fuel Cell System) in Japan. As the results of analysis, it is found that technological progress by learning has a positive impact on the penetration of clean coal technologies in the electricity market, and the learning model has a potential for assessing upcoming technologies in future.
Keywords: Energy; model; Technological; learning; Learning; curve; Spillover; effect; Clean; coal; technologies; Carbon; tax (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306-2619(10)00208-4
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:88:y:2011:i:1:p:330-336
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().