Comparison of two different flow types on CO removal along a two-stage hydrogen permselective membrane reactor for methanol synthesis
M.R. Rahimpour,
S. Mazinani,
B. Vaferi and
M.S. Baktash
Applied Energy, 2011, vol. 88, issue 1, 51 pages
Abstract:
Carbon monoxide (CO) is a gaseous pollutant with adverse effects on human health and the environment. Industrial chemical processes contribute significantly to CO accumulation in the atmosphere. One of the most important processes for controlling carbon monoxide emissions is the conversion of CO to methanol by catalytic hydrogenation. In this study, the effects of two different flow types on the rate of CO removal along a two-stage hydrogen permselective membrane reactor have been investigated. In the first configuration, fresh synthesis gas flows in the tube side of the membrane reactor co-currently with reacting material in the shell side, so that more hydrogen is provided in the first sections of the reactor. In the second configuration, fresh synthesis gas flows in the tube side of the membrane reactor counter-currently with reacting material in the shell side, so that more hydrogen is provided in the last sections of the reactor. For this membrane system, a one-dimensional dynamic plug flow model in the presence of catalyst deactivation was developed. Comparison between co-current and counter-current configurations shows that the reactor operates with higher conversion of CO and hydrogen permeation rate in the counter-current mode whereas; longer catalyst life is achieved in the co-current configuration. Enhancement of CO removal in the counter-current mode versus the co-current configuration results in an ultimate reduction in CO emissions into the atmosphere.
Keywords: CO; removal; Hydrogen-permselective; membrane; Two-stage; membrane; reactor; Dynamic; model; Catalyst; deactivation; Co-current; Counter-current (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306-2619(10)00129-7
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:88:y:2011:i:1:p:41-51
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().