EconPapers    
Economics at your fingertips  
 

Power-based performance comparison between carbon dioxide and R125 transcritical cycles for a low-grade heat source

Young-Jin Baik, Minsung Kim, Ki Chang Chang and Sung Jin Kim

Applied Energy, 2011, vol. 88, issue 3, 892-898

Abstract: In order to compare the power output of the carbon dioxide transcritical cycle and the R125 transcritical cycle for a low-grade heat source of about 100 °C, the two cycles were optimized for power output using a simulation method. In contrast to conventional approaches, each working fluid's heat transfer and pressure drop characteristics within the heat exchangers were taken into account by using a discretized heat exchanger model. To fairly compare the power output of the cycles by using different working fluids, the inlet temperatures and the flow rates of both the heat source and the heat sink were fixed. The cycle minimum temperature was not given, but was determined by the heat sink conditions and the working fluid's heat transfer and pressure drop characteristics, as it is in actual practice. The total heat transfer area was fixed, whereas the allocation of the heat-exchanger area between the vapor generator and the condenser was optimized in the simulation. The R125 transcritical cycle produced 14% more power than did the carbon dioxide transcritical cycle. Even though the carbon dioxide cycle shows better heat transfer and pressure drop characteristics in the heat exchangers, the high pumping power required to manage the large pressure head degrades the cycle's power output. Based on this study, the R125 transcritical cycle is recommended for heat sources of about 100 °C.

Keywords: Transcritical; cycle; Low-grade; heat; source; R125; Carbon; dioxide; Optimization; Exergy; analysis (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (45)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306-2619(10)00346-6
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:88:y:2011:i:3:p:892-898

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:88:y:2011:i:3:p:892-898