Efficiency enhancement in transonic compressor rotor blades using synthetic jets: A numerical investigation
Ernesto Benini,
Roberto Biollo and
Rita Ponza
Applied Energy, 2011, vol. 88, issue 3, 953-962
Abstract:
Several passive and active techniques were studied and developed by compressor designers with the aim of improving the aerodynamic behavior of compressor blades by reducing, or even eliminating, flow separation. Fluidic-based methods, in particular, have been investigated for a long time, including both steady and unsteady suction, blowing and oscillating jets. Recently, synthetic jets (zero mass flux) have been proposed as a promising solution to reduce low-momentum fluid regions inside turbomachines. Synthetic jets, with the characteristics of zero net mass flux and non-zero momentum flux, do not require a complex system of pumps and pipes. They could be very efficient because at the suction part of the cycle the low-momentum fluid is sucked into the device, whereas in the blowing part a high-momentum jet accelerates it. To the authors' knowledge, the use of synthetic jets has never been experimented in transonic compressor rotors, where this technique could be helpful (i) to reduce the thickness and instability of blade suction side boundary layer after the interaction with the shock, and (ii) to delay the arising of the low-momentum region which can take place from the shock-tip clearance vortex interaction at low flow operating conditions, a flow feature which is considered harmful to rotor stability. Therefore, synthetic jets could be helpful to improve both efficiency and stall margin in transonic compressor rotors. In this paper, an accurate and validated CFD model is used to simulate the aerodynamic behavior of a transonic compressor rotor with and without synthetic jets. Four technical solutions were evaluated, different for jet position and velocity, and one was investigated in detail.
Keywords: Synthetic; jets; Transonic; blade; Performance; improvement (search for similar items in EconPapers)
Date: 2011
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306-2619(10)00322-3
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:88:y:2011:i:3:p:953-962
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().