On cycle-to-cycle heat release variations in a simulated spark ignition heat engine
P.L. Curto-Risso,
A. Medina,
A. Calvo Hernández,
L. Guzmán-Vargas and
F. Angulo-Brown
Applied Energy, 2011, vol. 88, issue 5, 1557-1567
Abstract:
The cycle-by-cycle variations in heat release are analyzed by means of a quasi-dimensional computer simulation and a turbulent combustion model. The influence of some basic combustion parameters with a clear physical meaning is investigated: the characteristic length of the unburned eddies entrained within the flame front, a characteristic turbulent speed, and the location of the ignition kernel. The evolution of the simulated time series with the fuel-air equivalence ratio, [phi], from lean mixtures to over stoichiometric conditions, is examined and compared with previous experiments. Fluctuations on the characteristic length of unburned eddies are found to be essential to simulate the cycle-to-cycle heat release variations and recover experimental results. A non-linear analysis of the system is performed. It is remarkable that at equivalence ratios around [phi]Â [similar, equals]Â 0.65, embedding and surrogate procedures show that the dimensionality of the system is small.
Keywords: Spark; ignition; engines; Cycle-to-cycle; variability; Quasi-dimensional; simulations; Non-linear; dynamics (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306-2619(10)00493-9
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:88:y:2011:i:5:p:1557-1567
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().