EconPapers    
Economics at your fingertips  
 

Estimation of wind energy potential using different probability density functions

Tian Pau Chang

Applied Energy, 2011, vol. 88, issue 5, 1848-1856

Abstract: In addition to the probability density function (pdf) derived with maximum entropy principle (MEP), several kinds of mixture probability functions have already been applied to estimate wind energy potential in scientific literature, such as the bimodal Weibull function (WW) and truncated Normal Weibull function (NW). In this paper, two other mixture functions are proposed for the first time to wind energy field, i.e. the mixture Gamma-Weibull function (GW) and mixture truncated normal function (NN). These five functions will be reviewed and compared together with conventional Weibull function. Wind speed data measured from 2006 to 2008 at three wind farms experiencing different climatic environments in Taiwan are selected as sample data to test their performance. Judgment criteria include four kinds of statistical errors, i.e. the max error in Kolmogorov-Smirnov test, root mean square error, Chi-square error and relative error of wind potential energy. The results show that all the mixture functions and the maximum entropy function describe wind characterizations better than the conventional Weibull function if wind regime presents two humps on it, irrespective of wind speed and power density. For wind speed distributions, the proposed GW pdf describes best according to the Kolmogorov-Smirnov test followed by the NW and WW pdfs, while the NN pdf performs worst. As for wind power density, the MEP and GW pdfs perform best followed by the WW and NW pdfs. The GW pdf could be a useful alternative to the conventional Weibull function in estimating wind energy potential.

Keywords: Wind; speed; Wind; power; density; Probability; density; function; Weibull; function; Mixture; function; Statistical; error (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (80)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306-2619(10)00473-3
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:88:y:2011:i:5:p:1848-1856

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:88:y:2011:i:5:p:1848-1856