EconPapers    
Economics at your fingertips  
 

Performance comparison and parametric optimization of subcritical Organic Rankine Cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation

Zhang Shengjun, Wang Huaixin and Guo Tao

Applied Energy, 2011, vol. 88, issue 8, 2740-2754

Abstract: Organic Rankine Cycle (ORC) is a promising technology for converting the low-grade energy to electricity. This paper presents an investigation on the parameter optimization and performance comparison of the fluids in subcritical ORC and transcritical power cycle in low-temperature (i.e. 80-100 °C) binary geothermal power system. The optimization procedure was conducted with a simulation program written in Matlab using five indicators: thermal efficiency, exergy efficiency, recovery efficiency, heat exchanger area per unit power output (APR) and the levelized energy cost (LEC). With the given heat source and heat sink conditions, performances of the working fluids were evaluated and compared under their optimized internal operation parameters. The optimum cycle design and the corresponding operation parameters were provided simultaneously. The results indicate that the choice of working fluid varies the objective function and the value of the optimized operation parameters are not all the same for different indicators. R123 in subcritical ORC system yields the highest thermal efficiency and exergy efficiency of 11.1% and 54.1%, respectively. Although the thermal efficiency and exergy efficiency of R125 in transcritical cycle is 46.4% and 20% lower than that of R123 in subcritical ORC, it provides 20.7% larger recovery efficiency. And the LEC value is relatively low. Moreover, 22032L petroleum is saved and 74,019 kg CO2 is reduced per year when the LEC value is used as the objective function. In conclusion, R125 in transcritical power cycle shows excellent economic and environmental performance and can maximize utilization of the geothermal. It is preferable for the low-temperature geothermal ORC system. R41 also exhibits favorable performance except for its flammability.

Keywords: Organic; Rankine; cycle; Transcritical; power; cycle; Parametric; optimization; Low-temperature; geothermal; Working; fluids (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (142)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306-2619(11)00133-4
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:88:y:2011:i:8:p:2740-2754

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:88:y:2011:i:8:p:2740-2754