Effect of interface layer on the cooling performance of a single thermoelement
Osamu Yamashita
Applied Energy, 2011, vol. 88, issue 9, 3022-3029
Abstract:
The resultant thermoelectric (TE) figure of merit Z, the coefficient of performance (COP), the heat pumping capacity per unit area (Qc/S) were derived analytically as functions of l0, ρc, κc and sc for a single thermoelement (STE) by taking into account the interface layers, where l0 is a length of a TE material, ρc the electrical interface resistivity, κc the thermal interface conductivity and sc the ratio of the Seebeck coefficient of an interface layer to that of a TE material. As a result, it was first revealed that the increase in Z0T of a TE material is not necessarily reflected in the increase in ZT of an STE as long as the interface layers are present. The COP and Qc/S are lowered remarkably for sc=0 and κc⩽104W/m2K. However, it was clarified that even for low values of κc, the COP and Qc/S return to the original high values (obtained for κc⩾105W/m2K) at sc=0.45 and 0.90, respectively. The definite criterion of sc whether or not the boundary Seebeck coefficient has an effect on the enhancement of the cooling performance was indicated quantitatively for an STE with interface layers.
Keywords: Thermoelement; Thermoelectric figure of merit; Interface effect; Boundary Seebeck coefficient; Cooling performance; Coefficient of performance (COP) (search for similar items in EconPapers)
Date: 2011
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261911001747
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:88:y:2011:i:9:p:3022-3029
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2011.03.017
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().