Performance of trombe walls and roof pond systems
M. S. Sodha,
S. C. Kaushik and
J. K. Nayak
Applied Energy, 1981, vol. 8, issue 3, 175-191
Abstract:
This paper describes an analysis of the periodic heat transfer through thermal storage walls and roof pond systems subjected to periodic solar radiation and atmospheric air on one side and in contact with room air at constant temperature (corresponding to air-conditioned rooms) on the other. A one-dimensional heat conduction equation for temperature distribution in the walls and roof has been solved using the appropriate boundary conditions at the surfaces; explicit expressions for the periodic heat flux through storage walls and the roof have been derived. Numerical calculations for the periodic heat flux into the room have been made in order to assess the relative thermal performance of storage walls and roof pond systems in both winter and summer. It is found that a thermal storage mass wall is preferable for longer heat storage times while a water wall is suitable for rapid heat dissipation into the living space. For New Delhi, a roof pond system comprised of water-concrete-insulation, in ascending order of thickness, in the summer and in descending order of thickness in the winter, is found to be most desirable, whereas a combination with an ascending order of thickness is more appropriate for a typical cold climate like that of Boulder, Colorado, USA.
Date: 1981
References: Add references at CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0306-2619(81)90016-7
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:8:y:1981:i:3:p:175-191
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().