Thermal design of a roof as an inexpensive solar collector/storage system
A. Kumar,
U. Singh,
A. Srivastava and
G. N. Tiwari
Applied Energy, 1981, vol. 8, issue 4, 255-267
Abstract:
This paper presents the thermal performance of a roof as a solar collector/storage system which is important for the thermal design of buildings. The system consists of a mass of concrete or concrete insulation, one face of which is blackened/glazed and exposed to solar radiation and ambient air, while the other is in contact with room air at constant temperature. The heat can be extracted by the passage of water through the network of tubes in this block. It is seen that, by increasing the depth of the tubes, the rise in water temperature decreases but the time difference between the maxima of the solair temperature and that of the outlet water temperature increases. At a tube depth of 0·10 m, the maximum temperature rise of the water is 33·5°C. The corresponding efficiency of the system is 28·0% while the flow rate of water is 5·0 litre/h m2; the heat flux entering the room is also reduced considerably.
Date: 1981
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0306-2619(81)90022-2
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:8:y:1981:i:4:p:255-267
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().