EconPapers    
Economics at your fingertips  
 

Modeling technological changes in the biofuel production system in Indonesia

Joni Jupesta

Applied Energy, 2012, vol. 90, issue 1, 217 pages

Abstract: In Indonesia, the high subsidy on fossil fuel significantly burdens the country’s economy. The partial replacement of fossil fuel by biofuel in the transportation sector would significantly reduce fossil oil consumption. To enable this replacement, a model was built to predict the effects of biofuel in the energy system. This paper examines the importance of technological changes in biofuel production. The objective is to find the optimal net energy balance under land and technology constraints. An optimization model to find this optimum was developed by using GAMS as a tool to provide the optimal answer about the potential of biofuel production in Indonesia in a scenario of technology development and a base scenario. The model shows that a net energy balance can be achieved with up to 3.8kPJ in the technology scenario and 0.9kPJ in the base scenario (a scenario describing present government policy). The export value could rise to 33 billion US$ in the technology scenario. In the base scenario, the export value of biofuel drops from 7 billion US$ in 2023 and further declines thereafter due to the low growth in land allocation whilst domestic demand is increasing. The lowest production cost is achieved with palm oil production at 9.5 US$/GJ in 2025. The net emission balance in the base scenario could achieve 54Mtce, while in the technology scenario it could achieve 212Mtce. The technology scenario relies on technological changes through R&D and economies of scale, which are not considered in the base scenario. The outcome of the model is that technological changes could have a positive impact on the introduction of biofuel in the transportation sector in Indonesia, i.e.: a higher net energy balance, higher export value, lower production cost and higher net emission balance.

Keywords: Biofuel; Technological changes; Energy systems modeling; Sustainable production; Transportation sector (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626191100119X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:90:y:2012:i:1:p:211-217

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2011.02.020

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:90:y:2012:i:1:p:211-217