Investigation on the xylitol aqueous-phase reforming performance for pentane production over Pt/HZSM-5 and Ni/HZSM-5 catalysts
Ting Jiang,
Tiejun Wang,
Longlong Ma,
Yuping Li,
Qing Zhang and
Xinghua Zhang
Applied Energy, 2012, vol. 90, issue 1, 57 pages
Abstract:
Pt/HZSM-5 and Ni/HZSM-5 catalysts were prepared and evaluated for aqueous-phase reforming (APR) reaction of xylitol. Effects of reaction temperature, pressure and metal loading on xylitol conversion and pentane selectivity were studied. Experiments over 4wt% Pt/HZSM-5 catalysts showed that high temperature increased the xylitol conversion while high pressure led to the decrease of pentane selectivity. The xylitol conversion and pentane selectivity increased with the metal loading in the range of 0–3wt%, but the values decreased as further increasing the metal loading to 5wt% over both Ni/HZSM-5 and Pt/HZSM-5, indicating that higher metal loading would increase the rate of C–C bond cleavage compared to hydrogenation. Under the condition of 240°C and 4MPa, Ni/HZSM-5 and Pt/HZSM-5 with the same metal loading of 2wt% showed similar xylitol conversion, while the primary had higher pentane selectivity of 95% than 58% of the latter. Ni has higher activity for pentane production than Pt during the APR reaction of xylitol, while Pt has stronger effect of C–C bond cleavage to produce lighter alkanes of C1–C4. In order to investigate catalyst recyclability, 2wt% Ni/HZSM-5 was reused and analyzed by TG characterization. It was found that considerable amount of coke and heavy hydrocarbons were formed on the catalyst surface, which could cover the active sites and cause catalyst deactivation.
Keywords: Aqueous-phase reforming; Alkane production; Xylitol; Ni/HZSM-5; Pt/HZSM-5 (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261911002042
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:90:y:2012:i:1:p:51-57
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2011.03.034
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().