Towards orientation-independent performance of membraneless microfluidic fuel cell: Understanding the gravity effects
Jin Xuan,
Michael K.H. Leung,
Dennis Y.C. Leung and
Huizhi Wang
Applied Energy, 2012, vol. 90, issue 1, 80-86
Abstract:
This paper reports a theoretical investigation on the orientation-dependence of the performance of membraneless microfluidic fuel cell (MMFC) and the relevant gravity effects. A coupled computational fluid dynamics (CFD)/electrochemical model is used for the analysis. The results show that gravity significantly affects the hydrodynamics in the microchannel and consequently reduces the cell performance dramatically with certain orientations. This important phenomenon has been widely ignored in previous works. Parametric analysis offers useful insights for enhancing the MMFC designs that minimize the adverse effects towards a feature of orientation-independence.
Keywords: Membraneless microfluidic fuel cell; Gravity; Mixed potential; Computational fluid dynamics (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261911003114
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:90:y:2012:i:1:p:80-86
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2011.04.058
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().