EconPapers    
Economics at your fingertips  
 

Algorithmic acquisition of diagnostic patterns in district heating billing system

Sebastian Kiluk

Applied Energy, 2012, vol. 91, issue 1, 146-155

Abstract: An application of algorithmic exploration of billing data is examined for fault detection, diagnosis (FDD) based on evaluation of present state and detection of unexpected changes in energy efficiency of buildings. Large data sets from district heating (DH) billing systems are used for construction of feature space, diagnostic rules and classification of the buildings according to their energy efficiency properties. The algorithmic approach automates discovering knowledge about common, thus accepted changes in buildings’ properties, in equipment and in habitants’ behavior reflecting progress in technology and life style. In this article implementation of Data Mining and Knowledge Discovery (DMKD) method in supervision system with exemplary results based on real data is presented. Crucial steps of data processing influencing diagnostic results are described in details.

Keywords: Data Mining; District heating; Supervision; FDD; KLT; Billing system (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261911005952
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:91:y:2012:i:1:p:146-155

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2011.09.023

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:91:y:2012:i:1:p:146-155