EconPapers    
Economics at your fingertips  
 

District heating and ethanol production through polygeneration in Stockholm

Danica Djuric Ilic, Erik Dotzauer and Louise Trygg

Applied Energy, 2012, vol. 91, issue 1, 214-221

Abstract: Ethanol can be produced with little impact on the environment through the use of polygeneration technology. This paper evaluates the potential of integrating a lignocellulosic ethanol plant into a district heating system by case study; the plant has an ethanol capacity of 95MW with biogas, electricity and heat as by-products. Stockholm’s district heating system is used as the case study, but the results may be relevant also for other urban areas. The system has been studied using MODEST – an optimisation model framework. The results show that introducing the plant would lead to a significant reduction in the cost of heat production. The income from the biofuels and electricity produced would be about €76million and €130million annually, respectively, which is an increase of 70% compared to the income from the electricity produced in the system today. Assuming that the electricity produced will replace marginal electricity on the European electricity market and that the biofuel produced will replace gasoline in the transport sector, the introduction of the polygeneration plant in the district heating system would lead to a reduction of global CO2 emissions of about 0.7million tonnes annually.

Keywords: District heating; Polygeneration; Biofuel; Case study (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (21)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261911006337
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:91:y:2012:i:1:p:214-221

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2011.09.030

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:91:y:2012:i:1:p:214-221