EconPapers    
Economics at your fingertips  
 

Experimental study of the thermal characteristics of phase change slurries for active cooling

W. Lu and S.A. Tassou

Applied Energy, 2012, vol. 91, issue 1, 366-374

Abstract: Phase change materials (PCMs) are increasingly being used for thermal energy storage in buildings and industry to produce energy savings and reduce carbon dioxide emissions. PCM slurries are also being investigated for active thermal energy storage or as alternatives to conventional single phase fluids because they are pumpable and have advanced heat transport performance with phase change. The present study investigates several types of phase change materials for the preparation of PCM slurries which have potential for cooling applications. The thermophysical properties of paraffin in water emulsions, such as latent heat of fusion, melting and freezing temperature ranges, viscosity and the effect of surfactants, have been tested using appropriate experimental techniques. It has been identified that the use of small quantities of higher melting temperature paraffin and surfactants in the emulsion can reduce the effect of supercooling and increase the useful heat of fusion. However there are negative impacts on viscosity which should be considered in heat transport applications.

Keywords: Phase change material; Slurry; Paraffin–water emulsion; Thermophysical property; Heat transport (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261911006532
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:91:y:2012:i:1:p:366-374

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2011.10.004

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:91:y:2012:i:1:p:366-374