Performance and costs of advanced sustainable central power plants with CCS and H2 co-production
Mu Li,
Ashok D. Rao and
G. Scott Samuelsen
Applied Energy, 2012, vol. 91, issue 1, 43-50
Abstract:
With increasing concerns over global climate change caused by GHG emissions, carbon capture and storage (CCS) has become imperative for coal based power plants. Meanwhile, with the development and deployment of hybrid vehicles, electric vehicles, and alternative fuel vehicles, GHG reduction efforts in the power industry can also benefit the transportation sector. Power plants with H2 co-production capability can contribute significantly in such development trends because H2 powered fuel cell hybrid vehicles are very promising for future “zero emissions vehicles”. This work investigates the thermodynamic performance and cost advantage of employing advanced technologies currently under development for central power plants that (1) employ coal and biomass as feed stock; (2) co-produce power and high purity H2; (3) capture most of the CO2 evolved within the plants. Two system designs are developed: the first “base” case is an integrated gasification combined cycle (IGCC) system consisting of commercially ready technologies; the second “advanced” case is an integrated gasification fuel cell (IGFC) system. The feedstock employed consists of Utah bituminous coal along with two typical biomass resources, corn stover and cereal straw. The IGFC plant produces significantly higher amount of electricity for the same amounts of feedstock and H2 export while the cost of producing the H2 using a cost of electricity of $135/MWh is $1178/tonne for the IGFC case versus $2620/tonne for the IGCC case.
Keywords: Hydrogen coproduction; IGCC; IGFC; SOFC; Catalytic hydro-gasification; CO2 capture (search for similar items in EconPapers)
Date: 2012
References: View complete reference list from CitEc
Citations: View citations in EconPapers (28)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261911005800
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:91:y:2012:i:1:p:43-50
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2011.09.009
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().