EconPapers    
Economics at your fingertips  
 

Influence of droplet mutual interaction on carbon dioxide capture process in sprays

Wei-Hsin Chen, Yu-Lin Hou and Chen-I Hung

Applied Energy, 2012, vol. 92, issue C, 185-193

Abstract: Sprays are an important tool for carbon dioxide capture through absorption. To figure out CO2 capture processes in sprays, the gas absorbed by a single droplet under droplet mutual interaction is investigated. In the study, the number density of droplet is in the range of 103–106cm−3. By conceiving a bubble as the influence distance of the droplet–droplet interaction, the predictions indicate that the mutual interaction plays an important role on the absorption process and uptake amount of CO2 when the number density is as high as 106cm−3 with droplet radius of 30μm. Specifically, the absorption period and CO2 uptake amount of a droplet are reduced by 7% and 10%, respectively, so that the absorption rate is decreased compared to the droplet without interaction. Though the droplet mutual interaction abates the CO2 uptake amount of a single droplet, a higher number density is conducive to the total uptake amount of CO2 from the gas phase to the liquid phase. With the number density of 106cm−3 and increasing the droplet radius from 10 to 50μm, CO2 capture from the gas phase to the liquid phase is intensified from 0.35% to 47.8%, even though the droplet–droplet interaction lessens the CO2 uptake amount of a single droplet by a factor of 48%. In conclusion, a dense spray with larger droplet radii enhances the droplet–droplet interaction and thereby reduces CO2 capture capacity of single droplets; but more solute can be removed from the gas phase.

Keywords: Carbon capture and storage (CCS); Greenhouse gas; Scrubber and spray; Droplet mutual interaction; Number density; Mass diffusion number (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261911006891
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:92:y:2012:i:c:p:185-193

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2011.10.035

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:92:y:2012:i:c:p:185-193