EconPapers    
Economics at your fingertips  
 

Design criteria and optimization of heat recovery steam cycles for integrated reforming combined cycles with CO2 capture

Emanuele Martelli, Lars O. Nord and Olav Bolland

Applied Energy, 2012, vol. 92, issue C, 255-268

Abstract: One option for pre-combustion CO2 capture in power plants is the integrated reforming combined cycle (IRCC). IRCCs have previously been studied from multiple viewpoints: thermo-economic analysis, process optimization, environmental impact, and plant flexibility. This paper is focused on the design of the heat recovery steam cycle (HRSC), including the heat recovery steam generator (HRSG), and aims to define the optimal steam cycle configurations for plant efficiency and dual-fuel flexibility. A recently developed optimization algorithm was successfully applied to obtain a set of flexible and efficient designs for IRCCs. Results showed that the preferred designs consisted of a dual-pressure level HRSG with reheat and limited supplementary firing in duct burners, high-pressure evaporators and economizers in the syngas coolers, limited high-pressure level (140–154bar), and feedwater preheating. The most attractive optimized dual-pressure designs showed improvements of approximately 0.5% points in the net plant efficiency compared to the non-optimized base case. The resulting net plant efficiency was about 45.8% with a net power output of around 425MW for the best cases.

Keywords: Integrated reforming combined cycle; Heat recovery steam cycle; Heat recovery steam generator; Heat integration; Design optimization; Plant flexibility (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261911007045
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:92:y:2012:i:c:p:255-268

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2011.10.043

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:92:y:2012:i:c:p:255-268