A comparison of 15 polymers for application in photovoltaic modules in PV-powered boats
T. Gorter and
A.H.M.E. Reinders
Applied Energy, 2012, vol. 92, issue C, 286-297
Abstract:
Autonomous electric propulsion in boats by photovoltaic power is an upcoming technology which sets specific requirements to the integration of crystalline PV cells in boat surfaces, such as the deck. Light weight and flexibility of shape as well as endurance are required for successful PV-powered boat design. In order to find alternative materials for common glass and EVA laminates, we evaluated 15 polymers, some with glass fiber reinforcement (GFR), of which we assume they might be suitable for use as a replacement of glass in PV modules for recreational PV boats. The mechanical and optical properties and specific demands due to application in boats have been listed for these 15 polymers as well as variations with glass fiber reinforcement. Costs related to the thickness of polymers and GFR polymers have been taken into account. Our evaluation shows that some polymer materials that have been reinforced with glass fibers such as fluorides, show potential to be used as photovoltaic module materials. Epoxies and GFR epoxies show to be good alternatives when considering cost and weight reduction of PV modules. They offer high strength when thickness remains under 4mm. For epoxies, this would lead to a weight around 20g/Wp to 25g/Wp compared to a weight around 86g/Wp to 130g/Wp for PV glass laminates. Fluorides offer excellent UV-stability but are up to 20 times more expensive per kilogram and require structural support compared to glass. They prove to offer high energy conversion performance by having high UV stability and high transmittance. To be cost competitive with glass, the thickness of fluorides should be under 1mm. This could lead to a weight per Wattpeak ratio of 10g/Wp to 15g/Wp, which is a reduction of 85% compared to PV glass laminates.
Keywords: PV boats; PV modules; Polymer encapsulants; Glass fiber reinforced polymers (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261911007033
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:92:y:2012:i:c:p:286-297
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2011.10.042
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().