Influence of stabilizer jets on combustion characteristics and NOx emission in a jet-stabilized combustor
Hamed Zeinivand and
Farzad Bazdidi-Tehrani
Applied Energy, 2012, vol. 92, issue C, 348-360
Abstract:
The main purpose of the present work is to investigate numerically the effects of number and location of stabilizer jets on the combustion characteristics and NOx emission in a jet-stabilized combustor (JSC). A Finite Volume staggered grid approach is employed to solve the governing equations. The eddy dissipation-finite rate model is adopted for the heat release simulation and the Realizable k−ɛ turbulence model is taken on for the flow predictions. An Eulerian–Lagrangian formulation is used for the two-phase (gas-droplet) flow. The Discrete Ordinates method, adopting its S4 approximation is applied for thermal radiation modeling of the gas phase. It is demonstrated that an increase in axial distance of stabilizer jets from fuel injector results in NOx emission to decrease significantly and conversely it results in thermal power of combustor to enhance slightly. Also, an increase in number of jet holes (with invariable entrance air velocity) causes both the thermal power and NOx emission to enhance. NOx formation is shown to be more sensitive to location of stabilizer jet holes rather than its number. As the distance between stabilizer jets and fuel injector increases from 40mm to 60mm and then 80mm, uniformity of temperature profile is improved which could lead to better conditions at the combustor’s downstream section. This situation is valid for smaller number of stabilizer jets. An increase of stabilizer jets number from 4 to 6 and then 8 leads to an enhanced non-uniformity of temperature distribution towards the downstream.
Keywords: Jet-stabilized combustor; Finite Volume method; Reactive two-phase flow; NOx formation; Stabilizer jets number; Stabilizer jets location (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261911007306
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:92:y:2012:i:c:p:348-360
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2011.11.033
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().