Experimental analysis on the dehumidification and thermal performance of a desiccant wheel
Giovanni Angrisani,
Francesco Minichiello,
Carlo Roselli and
Maurizio Sasso
Applied Energy, 2012, vol. 92, issue C, 563-572
Abstract:
The advantages of desiccant-based air conditioning systems, compared to conventional ones based on the dehumidification by cooling, have been highlighted in many research papers. The energy saving and the reduction of the environmental impact are higher when the desiccant material is regenerated by using “free” thermal energy (for example, waste heat from cogenerators or solar energy). Further investigation on the performance of the desiccant wheel is useful: therefore, in this paper, an experimental analysis on this component is presented, with particular attention to the variation of the performance as a function of the process and regeneration air flow rates. The desiccant material is regenerated by means of low-temperature thermal energy (about 65°C) from a microcogenerator. Both the experimental results obtained by the authors and the data provided by the manufacturer have been used to calculate some performance parameters, and a satisfactory agreement has been obtained.
Keywords: Desiccant wheel; Performance parameters; Experimental analysis; Air flow variation (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (31)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626191100777X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:92:y:2012:i:c:p:563-572
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2011.11.071
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().